18.152 PROBLEM SET 1

due February 14th 9:30 am
or please submit to Gradescope by 16th Saturday 1:00 pm
You can collaborate with other students when working on problems. However, you should write the solutions using your own words and thought.

Problem 1. Let $g(x), h_{1}(t), h_{2}(t), f(x, t)$ be smooth functions and let $\alpha \geq 0$ be a non-negative constant. Then, the following Cauchy-Robin problem to the diffusion equation has at most one smooth solution.

$$
\begin{aligned}
& u_{t}(x, t)=u_{x x}(x, t)+f(x, t), \quad \text { for } 0 \leq x \leq L, 0 \leq t, \\
& -u_{x}(0, t)+\alpha u(0, t)=h_{1}(t), \quad \text { for } 0 \leq t, \\
& u_{x}(L, t)+\alpha u(L, t)=h_{2}(t), \quad \text { for } 0 \leq t, \\
& u(x, 0)=g(x), \quad \text { for } 0 \leq x \leq L .
\end{aligned}
$$

Notice that if $\alpha=0$ then it is a Cauchy-Neumann problem.
Problem 2. Given smooth $g(x)$, find the all solutions to the following Cauchy-Neumann problem;

$$
\begin{aligned}
& u_{t}(x, t)=u_{x x}(x, t), \quad \text { for } 0 \leq x \leq L, 0 \leq t, \\
& -u_{x}(0, t)=-1, \quad \text { for } 0 \leq t, \\
& u_{x}(L, t)=2, \quad \text { for } 0 \leq t, \\
& u(x, 0)=g(x), \quad \text { for } 0 \leq x \leq L .
\end{aligned}
$$

Hint: Refer the uniqueness result in the previous result, and consider a function $\tilde{u}(x, t)=u(x, t)+a x^{2}+b x+c t$ satisfying $\tilde{u}_{t}=\tilde{u}_{x x}$ and $\tilde{u}_{x}(0, t)=\tilde{u}_{x}(L, t)=0$.

Problem 3. Suppose that $u(x, t)$ is the smooth solution to the following Cauchy-Neumann problem;

$$
\begin{aligned}
& u_{t}(x, t)=u_{x x}(x, t), \quad \text { for } 0 \leq x \leq L, 0 \leq t, \\
& u_{x}(0, t)=u_{x}(L, t)=0, \quad \text { for } 0 \leq t, \\
& u(x, 0)=g(x), \quad \text { for } 0 \leq x \leq L,
\end{aligned}
$$

where $g(x)$ is smooth. Then, for $p \geq 2$ prove the following inequality

$$
\frac{d}{d t} \int_{0}^{L}|u(x, t)|^{p} d x \leq 0
$$

namely $\sqrt[p]{\int_{0}^{L}|u(x, t)|^{p} d x}$ monotonically decreases.
Notice that a smooth function $u(x, t)$ satisfies

$$
\begin{equation*}
\lim _{p \rightarrow \infty}\left(\int_{0}^{L}|u(x, t)|^{p} d x\right)^{\frac{1}{p}}=\sup _{0 \leq x \leq L}|u(x, t)| . \tag{}
\end{equation*}
$$

Hence, the result in Problem 3 shows that $\sup _{0 \leq x \leq L}|u(x, t)|$ monotonically decreases. We will prove it again in class by using another method without $\left(^{*}\right)$.

Problem 4. Let $u(x, t)$ be the smooth solution to the following CauchyNeumann problem;

$$
\begin{aligned}
& u_{t}(x, t)=u_{x x}(x, t), \quad \text { for } 0 \leq x \leq L, 0 \leq t, \\
& u_{x}(0, t)=u_{x}(L, t)=0, \quad \text { for } 0 \leq t, \\
& u(x, 0)=g(x), \quad \text { for } 0 \leq x \leq L,
\end{aligned}
$$

where $g(x)$ is smooth. Show the following inequality

$$
\frac{d}{d t} \int_{0}^{L}\left|u_{x}(x, t)\right|^{2}+\left|u_{t}(x, t)\right|^{2} d x \leq 0
$$

